
Using Java 8 Lambdas and StampedLock To Manage Thread Safety 1

Using Java 8 Lambdas And
Stampedlock To Manage

Thread Safety

Dr Heinz M. Kabutz  

heinz@javaspecialists.eu
Last updated 2017-02-23  

© 2013-2017 Heinz Kabutz – All Rights Reserved

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

What is StampedLock?

l Java 8 synchronizer

lAllows optimistic reads
– ReentrantReadWriteLock only has pessimistic reads

lNot reentrant
– This is not a feature

lUse to enforce invariants across multiple fields
– For simple classes, synchronized/volatile is easier and faster

2

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

public class StampedLock { 
 long writeLock() // never returns 0, might block 

 // returns new write stamp if successful; otherwise 0
 long tryConvertToWriteLock(long stamp)

 void unlockWrite(long stamp) // needs write stamp

// and a bunch of other methods left out for brevity

Pessimistic Exclusive Lock (write)

3

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

public class StampedLock { // continued ... 
 long readLock() // never returns 0, might block 

 // returns new read stamp if successful; otherwise 0
 long tryConvertToReadLock(long stamp)

 void unlockRead(long stamp) // needs read stamp

 void unlock(long stamp) // unlocks read or write

Pessimistic Non-Exclusive Lock (read)

4

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

public class StampedLock { // continued ...
 // could return 0 if a write stamp has been issued
 long tryOptimisticRead()

 // return true if stamp was non-zero and no write
 // lock has been requested by another thread since
 // the call to tryOptimisticRead()
 boolean validate(long stamp)

Optimistic Non-Exclusive Read (No Lock)

5

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Sifis the Crocodile (RIP)

6

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Introducing the Position Class

lWhen moving from (0,0) to (5,5), we want to go in a
diagonal line
– We don’t want to ever see our position at (0,5) or (5,0)

7

(5,5)

(0,0)

👍 👎 (5,5)

(0,0)

(5,0)

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Moving Our Position

lSimilar to ReentrantLock code

8

public class Position {
 private double x, y;
 private final StampedLock sl = new StampedLock();

 // method is modifying x and y, needs exclusive lock
 public void move(double deltaX, double deltaY) {
 long stamp = sl.writeLock();
 try {
 x += deltaX;
 y += deltaY;
 } finally {
 sl.unlockWrite(stamp);
 }
 }

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Using AtomicReference

l do-while until we finally manage to move

9

public class PositionAtomicNonBlocking {
 private final AtomicReference<double[]> xy =
 new AtomicReference<>(new double[2]);

 public void move(double deltaX, double deltaY) {
 double[] current, next = new double[2];
 do {
 current = xy.get();
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 } while(!xy.compareAndSet(current, next));
 }

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

CompareAndSwap with sun.misc.Unsafe

l First we find the memory location offset of the field “xy”

10

public class PositionUnsafeNonBlocking {
 private final static Unsafe UNSAFE =
 Unsafe.getUnsafe();
 private static final long XY_OFFSET;
 static {
 try {
 XY_OFFSET = UNSAFE.objectFieldOffset(
 PositionUnsafeNonBlocking.class.
 getDeclaredField("xy"));
 } catch (NoSuchFieldException e) {
 throw new ExceptionInInitializerError(e);
 }
 }
 private volatile double[] xy = new double[2];

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

CompareAndSwap with sun.misc.Unsafe

lOur move() method is similar to AtomicReference

11

public void move(double deltaX, double deltaY) {
 double[] current, next = new double[2];
 do {
 current = xy;
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 } while (!UNSAFE.compareAndSwapObject(
 this, XY_OFFSET, current, next));
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Single Writer with sun.misc.Unsafe

l If we can guarantee that only one thread will ever write

lSimilar code for AtomicReference

12

public void move(double deltaX, double deltaY) {
 double[] newXY = xy.clone();
 newXY[0] += deltaX;
 newXY[1] += deltaY;
 UNSAFE.putOrderedObject(this, XY_OFFSET, newXY);
}

public void move(double deltaX, double deltaY) {
 double[] newXY = xy.get().clone();
 newXY[0] += deltaX;
 newXY[1] += deltaY;
 xy.lazySet(newXY);
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

So When To Use Unsafe?

lSimple answer: never

lReputation of “running close to bare metal”
– But just like “Quick Sort”, it can be slower than alternatives

lAtomicFieldUpdaters have increased in performance
– http://shipilev.net/blog/2015/faster-atomic-fu/

lNext: VarHandles in Java 9

13

Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Java Specialists Newsletter

Get Our “Top 10 Newsletters”
http://tinyurl.com/jaxfin17

14

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

VarHandles Instead of Unsafe/AtomicReference

lVarHandles remove biggest temptation to use Unsafe
– Java 9: https://bugs.openjdk.java.net/browse/JDK-8080588

lSeems to be as fast, or faster, than Unsafe

lAdditional cool features, such as:
– getVolatile() / setVolatile()

– getAcquire() / setRelease()

– getOpaque() / setOpaque()

– compareAndSet(), returning boolean

– compareAndExchangeVolatile(), more like a proper CAS

– fullFence(), acquireFence(), releaseFence(), loadLoadFence(),
storeStoreFence()

15

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

VarHandles Instead of Unsafe/AtomicReference

l First step is to set up the VarHandle

16

public class PositionVarHandlesNonBlocking {
 private static final VarHandle XY_HANDLE;

 static {
 try {
 XY_HANDLE = MethodHandles.lookup().findVarHandle(
 PositionVarHandlesNonBlocking.class,
 "xy", double[].class);
 } catch (ReflectiveOperationException e) {
 throw new Error(e);
 }
 }

Note: Exact API
might still change

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

CompareAndSet with VarHandle

lOur move() method almost identical to “Unsafe” version

17

public void move(double deltaX, double deltaY) {
 double[] current, next = new double[2];
 do {
 current = xy;
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 } while (!XY_HANDLE.compareAndSet(this, current, next));
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

compareAndExchangeVolatile() with VarHandle

l Instead of having to read the volatile field, get it from CAS

18

public void move(double deltaX, double deltaY) {
 double[] current, swapResult = xy, next = new double[2];
 do {
 current = swapResult;
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 }
 while ((swapResult =
 (double[]) XY_HANDLE.compareAndExchangeVolatile(
 this, current, next)) != current);
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Back to StampedLock: Optimistic Read

lAvoids pessimistic read locking

lBetter throughput than ReadWriteLock

19

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

20

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

21

We get a
stamp to use

for the
optimistic

read

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

22

We read
field values
into local

fields

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

23

Next we validate
that no write

locks have been
issued in the
meanwhile

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

24

If they have, then
we don't know if
our state is clean

Thus we acquire a
pessimistic read
lock and read the

state into local
fields

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Code Idiom for Optimistic Read
public double optimisticRead() {
 long stamp = sl.tryOptimisticRead();
 double currentState1 = state1,
 currentState2 = state2, ... etc.;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentState1 = state1;
 currentState2 = state2, ... etc.;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return calculateSomething(currentState1, currentState2);
}

25

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Optimistic Read in our Position class
public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 double currentX = x, currentY = y;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentX = x;
 currentY = y;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return Math.hypot(currentX, currentY);
}

26

The shorter the code path
from tryOptimisticRead()

to validate(), the better
the chances of success

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Distance Calculation with AtomicReference

lExtremely easy and very fast

27

public double distanceFromOrigin() {
 double[] current = xy.get();
 return Math.hypot(current[0], current[1]);
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

public double distanceFromOrigin() {
 double[] current = xy;
 return Math.hypot(current[0], current[1]);
}

Distance Calculation with Unsafe/VarHandle

lEven easier

28

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Conditional Change Idiom with StampedLock
public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.readLock();
 try {
 while (x == oldX && y == oldY) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 x = newX; y = newY;
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

29

Unlike
ReentrantReadWriteLock,

this will not deadlock

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Previous Idiom is Only of Academic Interest

l This is easier to understand, and faster!

30

public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.writeLock();
 try {
 if (x == oldX && y == oldY) {
 x = newX;
 y = newY;
 return true;
 }
 } finally {
 sl.unlock(stamp);
 }
 return false;
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Conditional Move with VarHandle

lMulti-threaded is much faster than StampedLock version

31

public void moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 double[] current = xy;
 if (current[0] == oldX && current[1] == oldY) {
 double[] next = {newX, newY};
 do {
 if (XY_HANDLE.compareAndSet(this, current, next))
 return;
 current = xy;
 } while (current[0] == oldX && current[1] == oldY);
 }
}

But is it correct? Good
question! Difficult to test.

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

StampedLock Idioms are Difficult to Master

l Instead, we can define static helper methods
– Gang-of-Four Facade Pattern

l Lambdas make helper methods pluggable

32

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Moving with StampedLockIdioms

l The old move() method

lNow looks like this

33

public void move(double deltaX, double deltaY) {
 long stamp = sl.writeLock();
 try {
 x += deltaX;
 y += deltaY;
 } finally {
 sl.unlockWrite(stamp);
 }
}

public void move(double deltaX, double deltaY) {
 StampedLockIdioms.writeLock(sl, () -> {
 x += deltaX;
 y += deltaY;
 });
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Our StampedLockIdioms

lWe simply call writeJob.run() inside the locked section

lChecked exceptions would be an issue though

34

public class StampedLockIdioms {
 public static void writeLock(StampedLock sl,
 Runnable writeJob) {
 long stamp = sl.writeLock();
 try {
 writeJob.run();
 } finally {
 sl.unlockWrite(stamp);
 }
 }
 // ...

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Optimistic Read using StampedLockIdioms

lOur old distanceFromOrigin

35

public double distanceFromOrigin() {
 long stamp = sl.tryOptimisticRead();
 double currentX = x, currentY = y;
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 currentX = x;
 currentY = y;
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return Math.hypot(currentX, currentY);
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Optimistic Read using StampedLockIdioms

lBecomes this new mechanism

36

public double distanceFromOrigin() {
 double[] current = new double[2];
 return StampedLockIdioms.optimisticRead(sl,
 () -> {
 current[0] = x;
 current[1] = y;
 },
 () -> Math.hypot(current[0], current[1]));
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Our StampedLockIdioms.optimisticRead() Method

l The reading.run() call would probably be inlined

37

public static <T> T optimisticRead(
 StampedLock sl,
 Runnable reading,
 Supplier<T> computation) {
 long stamp = sl.tryOptimisticRead();
 reading.run();
 if (!sl.validate(stamp)) {
 stamp = sl.readLock();
 try {
 reading.run();
 } finally {
 sl.unlockRead(stamp);
 }
 }
 return computation.get();
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Conditional Change using StampedLockIdioms

lOur old moveIfAt()

38

public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 long stamp = sl.readLock();
 try {
 while (x == oldX && y == oldY) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 stamp = writeStamp;
 x = newX; y = newY;
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Optimistic Read using StampedLockIdioms

lBecomes this new mechanism

39

public boolean moveIfAt(double oldX, double oldY,
 double newX, double newY) {
 return StampedLockIdioms.conditionalWrite(
 sl,
 () -> x == oldX && y == oldY,
 () -> {
 x = newX;
 y = newY;
 }
);

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Our StampedLockIdioms.conditionalWrite()
public static boolean conditionalWrite(
 StampedLock sl, BooleanSupplier condition,
 Runnable action) {
 long stamp = sl.readLock();
 try {
 while (condition.getAsBoolean()) {
 long writeStamp = sl.tryConvertToWriteLock(stamp);
 if (writeStamp != 0L) {
 action.run();
 stamp = writeStamp;
 return true;
 } else {
 sl.unlockRead(stamp);
 stamp = sl.writeLock();
 }
 }
 return false;
 } finally { sl.unlock(stamp); }
}

40

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Using AtomicReference with Lambdas

l The old move() method

lNow looks like this

41

public void move(double deltaX, double deltaY) {
 double[] current, next = new double[2];
 do {
 current = xy.get();
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 } while (!xy.compareAndSet(current, next));
}

public void move(double deltaX, double deltaY) {
 xy.accumulateAndGet(new double[2], (current, next) -> {
 next[0] = current[0] + deltaX;
 next[1] = current[1] + deltaY;
 return next;
 });
}

©
 2013-2017 H

einz K
abutz – A

ll R
ights R

eserved 
Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Conclusion

l Java 8 Lambdas help to correctly use concurrency idioms
– Example in JDK is AtomicReference.accumulateAndGet()

– Might increase object creation rate
• Although escape analysis might minimize this

lPerformance of new Java 9 VarHandles as good as Unsafe
– Very few use cases for Unsafe going forward

– Looking forward to seeing the JDK concurrency classes rewritten
• ConcurrentLinkedQueue, ConcurrentHashMap, Random,

CopyOnWriteArrayList, ForkJoinPool, etc.
• Basically any class that does any concurrency …

42

Using Java 8 Lambdas and StampedLock To Manage Thread Safety

Java Specialists Newsletter

Get Our “Top 10 Newsletters”
http://tinyurl.com/jaxfin17

43

